Classifying spaces and infinite symmetric products

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposable symmetric mappings between infinite dimensional spaces

Decomposable mappings from the space of symmetric k-fold tensors over E, ⊗ s,k E, to the space of k-fold tensors over F , ⊗ s,k F , are those linear operators which map nonzero decomposable elements to nonzero decomposable elements. We prove that any decomposable mapping is induced by an injective linear operator between the spaces on which the tensors are defined. Moreover, if the decomposable...

متن کامل

Arrangements of symmetric products of spaces

We study the combinatorics and topology of general arrangements of subspaces of the form D + SP(X) in symmetric products SP(X) where D ∈ SP (X). Symmetric products SP(X) := X/Sm, also known as the spaces of effective “divisors” of order m, together with their companion spaces of divisors/particles, have been studied from many points of view in numerous papers, see [8] and [22] for the reference...

متن کامل

Classifying pentavalnet symmetric graphs of order $24p$

A graph is said to be symmetric if its automorphism group is transitive on its arcs. A complete classification is given of pentavalent symmetric graphs of order 24p for each prime p. It is shown that a connected pentavalent symmetric graph of order 24p exists if and only if p=2, 3, 5, 11 or 17, and up to isomorphism, there are only eleven such graphs.

متن کامل

Bounded Symmetric Homogeneous Domains in Infinite Dimensional Spaces

In this article, we exhibit a large class of Banach spaces whose open unit balls are bounded symmetric homogeneous domains. These Banach spaces, which we call J*-algebras, are linear spaces of operators mapping one Hilbert space into another and have a kind of Jordan tripte product structure. In particular, all Hilbert spaces and all B*--algebras are J*-algebras. Moreover, all four types of the...

متن کامل

Infinite dimensional non-positively curved symmetric spaces of finite rank

This paper concerns a study of three families of non-compact type symmetric spaces of infinite dimension. Although they have infinite dimension they have finite rank. More precisely, we show they have finite telescopic dimension. We also show the existence of Furstenberg maps for some group actions on these spaces. Such maps appear as a first step toward superrigidity results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1969

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1969-0251719-4